
Parallel algorithms and concentration bounds for the Lovász Local Lemma via

witness-DAGs

Bernhard Haeupler∗ David G. Harris†

Abstract

The Lovász Local Lemma (LLL) is a cornerstone prin-
ciple in the probabilistic method of combinatorics, and
a seminal algorithm of Moser & Tardos (2010) pro-
vides an efficient randomized algorithm to implement
it. This algorithm can be parallelized to give an al-
gorithm that uses polynomially many processors and
runs in O(log3 n) time, stemming from O(log n) adap-
tive computations of a maximal independent set (MIS).
Chung et al. (2014) developed faster local and parallel
algorithms, potentially running in time O(log2 n), but
these algorithms work under significantly more stringent
conditions than the LLL.

We give a new parallel algorithm that works under
essentially the same conditions as the original algorithm
of Moser & Tardos but uses only a single MIS compu-
tation, thus running in O(log2 n) time. This concep-
tually new algorithm also gives a clean combinatorial
description of a satisfying assignment which might be
of independent interest. Our techniques extend to the
deterministic LLL algorithm given by Chandrasekaran
et al. (2013) leading to an NC-algorithm running in
time O(log2 n) as well.

We also provide improved bounds on the run-
times of the sequential and parallel resampling-based
algorithms originally developed by Moser & Tardos.
Our bounds extend to any problem instance in which
the tighter Shearer LLL criterion is satisfied. We also
improve on the analysis of Kolipaka & Szegedy (2011)
to give tighter concentration results.

1 Introduction

The Lovász Local Lemma (LLL), first introduced in
[5], is a cornerstone principle in probability theory. In
its simplest symmetric form, it states that if one has
a probability space Ω and a set of m “bad” events

∗School of Computer Science, Carnegie Mellon University.

Research supported in part by NSF Awards CCF-1527110 and
CCF-1618280. Email: haeupler@cs.cmu.edu

†Department of Computer Science, University of Mary-
land, College Park, MD 20742. Research supported in part
by NSF Awards CNS-1010789 and CCF-1422569. Email:
davidgharris29@gmail.com

B in that space, and each such event has probability
PΩ(B) ≤ p; and each event depends on at most d other
events, then under the criterion

(1.1) ep(d + 1) ≤ 1

there is a positive probability that no bad events occurs.
If equation (1.1) holds, we say the symmetric LLL
criterion is satisfied.

Although the LLL applies to general probability
spaces, and the notion of dependency for a general space
can be complicated, in most applications in combina-
torics a simpler setting is used, in which the probability
space Ω is determined by a series of discrete variables
X1, . . . , Xn, each of which is drawn independently with
PΩ(Xi = j) = pij . Each bad event B ∈ B is a Boolean
function (possibly a complex one) determined by vari-
ables SB ⊆ [n]. Then events B, B′ are dependent if they
share a common variable, i.e., SB ∩ SB′ 6= ∅.

We use the notation B ∼ B′ to mean that B, B′

are dependent. We also use the notation N(B) to
mean the inclusive neighborhood of B, that is, the set
N(B) = {B′ ∈ B|B′ ∼ B}. Note that B ∈ N(B).
Finally, we use the notation i ∼ B to mean that i ∈ SB .

There is a more general form of the LLL, known
as the asymmetric LLL, which can be stated as follows.
Suppose that one has a weighting function x : B →
(0, 1), with the following property:

(1.2) ∀B ∈ B PΩ(B) ≤ x(B)
∏

B′∼B,B′ 6=B

(1−x(B′))

In this case, too, there is a positive probability of
avoiding all bad events. The symmetric LLL is a special
case of this, derived by setting x(B) = ep.

Both of these criteria are special cases of a yet more
powerful criterion, known as the Shearer criterion. This
criterion requires a number of definitions to state; we
discuss this further in Section 1.3.

The probability of avoiding all bad events, while
non-zero, is usually exponentially small; so the LLL does
not lead to efficient algorithms directly. Moser & Tardos
[14] introduced a remarkable randomized procedure,
which we refer to as the Resampling Algorithm, which
gives polynomial-time algorithms for nearly all LLL
applications:

1170 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

1. Draw all variables X ∼ Ω.

2. While some bad events are true:

3. Choose some true B ∈ B arbitrarily.

4. Resample the variables in SB , independently
from the distribution Ω.

This resampling algorithm terminates with proba-
bility one under the same condition as the probabilistic
LLL, viz. satisfying the Shearer criterion. The expected
number of resamplings is typically polynomial in the in-
put parameters.

We note that this procedure can be useful even
when the total number of bad events is exponentially
large. At any stage of this algorithm, the expected
number of bad events which are currently true (and thus
need to be processed), is still polynomial. If we have
an oracle which lists the currently-true bad events in
time poly(n), then the overall run-time of this algorithm
can still be polynomial in n. Such oracles are typically
very problem-specific; see [8] for more details; for the
remainder of this paper, we will simply assume that we
have such an oracle.

1.1 Parallel algorithms for the LLL Moser &
Tardos also gave a simple RNC algorithm for the LLL.
Unlike their sequential algorithm, this requires a small
slack in the LLL criterion. In the symmetric setting,
this criterion is

ep(1 + ǫ)(d + 1) ≤ 1

and in the asymmetric setting, it is given by

∀B ∈ B (1 + ǫ)PΩ(B) ≤ x(B)
∏

B′∼B,B′ 6=B

(1− x(B′))

for some parameter ǫ ∈ (0, 1/2). We refer to these
stronger criteria as ǫ-multiplicative slack.

In this case, the parallel algorithm works as follows:

1. Draw all variables X ∼ Ω.

2. While some bad events are true:

3. Choose a maximal independent set I of bad
events which are currently true.

4. Resample, in parallel, all the variables
⋃

B∈I SB from the distribution Ω.

In order to implement this algorithm, we need a
parallel subroutine which can find all the bad events
that are true on a given configuration. We refer to this
subroutine as a Bad-Event Checker ; it is typically very
problem-specific but routine to implement.

They showed that this algorithm terminates

with high probability after O
(

ǫ−1 log(n
∑

B∈B
x(B)

1−x(B))
)

rounds.1 In each round, there are two main compu-
tational tasks: one must run the Bad-Event Checker
and one must find a maximal independent set (MIS)
among the bad events which are currently true. The
former can typically be implemented in time O(log n).
Using the algorithm of Luby [12], finding the MIS re-

quires O(log2(n
∑

B∈B
x(B)

1−x(B))) time. Thus the overall

run-time is O(ǫ−1 log3(n
∑

B∈B
x(B)

1−x(B))) and the overall

processor complexity is poly(n,
∑

B∈B
x(B)

1−x(B))).
2

The computation of an MIS is relatively costly. In
[4], Chung et al. gave several alternative algorithms
for the symmetric LLL which either avoid this step
or reduce its cost. Although the main focus of [4]
was obtaining distributed algorithms for the LLL, these
algorithm have reduced time complexity as well.

They give one algorithm, based on bad events
choosing random priorities and resampling a bad event
if it has earlier priority than its neighbors, which runs
in O(ǫ−1 log n) distributed rounds and O(ǫ−1 log2 n)
time. Unfortunately, this algorithm of [4] requires
a stronger criterion than the LLL: namely, in the
symmetric setting, it requires that epd2 ≤ (1 − ǫ).
In many applications of the LLL, particularly those
based on Chernoff bounds for the sum of independent
random variables, satisfying the stricter criterion epd2 ≤
(1 − ǫ) leads to qualitatively similar results as the
symmetric LLL. In other cases, the criterion of [4] loses
much critical precision leading to weaker results. In
particular, their bound essentially corresponds to the
state of the art [13] before the break-through result of
Moser and Moser-Tardos [14].

Another algorithm given by Chung et al. requires
only the standard symmetric LLL criterion and runs in
O(ǫ−1 log2 d log n) rounds. Recently, a key subroutine
used by this algorithm was improved by [7], leading
to a reduction to O(ǫ−1 log d log n) rounds. When d is
polynomial in n, however, this does not improve on the
Moser-Tardos algorithm.

In [3], a deterministic parallel (NC) algorithm was
given for the LLL. In the symmetric LLL setting, this
requires satisfying a criterion epd1+ǫ ≤ 1, and the

1We say that an event occurs with high probability (abbrevi-
ated whp), if it occurs with probability ≥ 1 − n

−Ω(1).
2We note that the weighting function x(B) plays a some-

what mysterious role in the LLL, and it can be confusing to

have it appear in the complexity bounds for Resampling Algo-
rithm. There are even pathological cases in which the LLL cri-

terion are satisfied, and the Parallel Resampling Algorithm ter-

minates quickly, but
P

B

x(B)
1−x(B)

→ ∞. But usually we have
P

B

x(B)
1−x(B)

= poly(n).

1171 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

overall runtime is O(ǫ−1 log3(mn)). This too can be
extended to an asymmetric setting, but there are many
more technical conditions on the precise form of B.

1.2 Overview of our results In Section 2, we
introduce a new theoretical structure to analyze the
behavior of the Resampling Algorithm, which we refer
to as the witness DAG. This provides an explanation
or history for some or all of the resamplings that occur.
This generalizes the notion of a witness tree, introduced
by Moser & Tardos in [14], which only provides the
history of a single resampling. We use this tool to show
stronger bounds on the Parallel Resampling Algorithm
given by Moser & Tardos:

Theorem 1.1. Suppose that the Shearer criterion
is satisfied with ǫ-multiplicative slack. Then whp
the Parallel Resampling Algorithm terminates after
O(ǫ−1 log n) rounds

Suppose furthermore we have a Bad-Event Checker
which uses polynomial processors and T time. Then to-
tal complexity of the Parallel Resampling Algorithm is

O((log n)(T+log2 n)
ǫ) expected time and ǫ−1nO(1) proces-

sors.

These bounds are independent of the LLL weighting
function x(B) and the number of bad events m. These
significantly improve on qualitatively similar bounds
shown in Kolipaka & Szegedy [11], which show that Par-
allel Resampling Algorithm terminates, with constant
probability, after ǫ−1 log(n/ǫ) rounds.3

In Section 3, we show a new and stronger concentra-
tion result for the runtime of the Sequential Resampling
Algorithm. Our bound improves on similar concentra-
tion bounds shown in [11] and [1]. We state this result
here in terms of the asymmetric LLL criterion; we later
also give a more general bound in terms of the Shearer
criterion.

Theorem 1.2. Suppose that the asymmetric LLL cri-
terion is satisfied with ǫ-multiplicative slack. Then, with
high probability, the total number of resamplings made

by the Resampling Algorithm is at most O(
∑

B
x(B)

1−x(B) +

ǫ−1 log2 n). Alternatively, suppose that the symmetric
LLL criterion ep(d+1) ≤ 1 is satisfied. Then, whp, the
number of resamplings is at most O(n + d log2 n).

In Section 4 and 5, we develop a new parallel al-
gorithm for the LLL. The basic idea of this algorithm

3Note that Kolipaka & Szegedy use m for the number of
variables and n for the number of bad events, while we do the
opposite. In this paper, we have translated all of their results

into our notation. The reader should be careful to keep this in
mind when reading their original paper.

is to select a random resampling table and then pre-
compute all possible resampling-paths compatible with
it. Surprisingly, this larger collection, which in a sense
represents all possible choices for the trajectory of the
Resampling Algorithm, can still be computed relatively
quickly (in approximately O(ǫ−1 log2 n) time). Next,
we find a single MIS of this larger collection, which will
allow us to determine the complete set of resamplings
necessary. It is this reduction from ǫ−1 log n separate
MIS algorithms to just one that is the key to our im-
proved runtime.

We will later analyze the run-time of this parallel al-
gorithm for the Shearer criterion, but this requires many
preliminary definitions. We give a simpler statement of
our new algorithm for the symmetric LLL criterion:

Theorem 1.3. Suppose that we have a Bad-Event
Checker running in time O(log n) using polynomially
many processors. Suppose that each bad event B has
PΩ(B) ≤ p and is dependent with at most d other
bad events and that ep(1 + ǫ)(d + 1) ≤ 1 for some
ǫ > 0. Then, there is an algorithm finding a configu-
ration avoiding B using Õ(ǫ−1 log(mn) log n) time and
(mn)O(1) processors. (Here, the Õ hides factors of the
form poly(log log(mn)).)

In Section 6, we show how this algorithm can be
derandomized, to give an NC algorithm which also
requires O(ǫ−1 log2(mn)) time.

1.3 Stronger LLL criteria The LLL criterion, in
either its symmetric or asymmetric form, depends on
only two parameters: the probabilities of the bad events,
and their dependency structure. The symmetric LLL
criterion ep(d+1) ≤ 1 is a very simple criterion involving
these parameters, but it is not the most powerful. In
[15], Shearer gave the strongest possible criterion that
can be stated in terms of these parameters alone. This
criterion is somewhat cumbersome to state and difficult
to work with technically, but it is useful theoretically
because it subsumes many of the other simpler criteria.

We note that the “lopsided” form of the LLL can be
applied to this setting, in which bad events are atomic
configurations of the variables (as in a k-SAT instance),
and this can be stronger than the ordinary LLL. Moser
& Tardos showed that, to a limited extent this can be
made algorithmic. As shown in [9], there are forms of
lopsidependency in the Moser-Tardos setting which can
even go beyond the Shearer criterion itself. However,
giving parallel algorithms which can take advantage of
this lopsidependency phenomenon is very challenging.
In [9], a complicated and much slower parallel algorithm
was given for this setting. In this paper we are only
concerned with the standard (not lopsided) LLL, and we

1172 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

do not attempt to match the algorithmic improvements
of [9].

To state the Shearer criterion, it will be useful
to suppose that the dependency structure of our bad
events B is fixed, but the probabilities for the bad events
have not been specified. We define the independent-set
polynomial Q(I, p) as

Q(I, p) =
∑

I⊆J⊆B
J independent

(−1)|J|−|I|
∏

B∈J

p(B)

for any I ⊆ B. Note that Q(I, p) = 0 if I is not
an independent set. This quantity plays a key role
in Shearer’s criterion for the LLL [15], and in turn
plays a key role in the behavior of the Resampling
Algorithm. We say that the probabilities p satisfy the
Shearer criterion iff Q(∅, p) > 0 and Q(I, p) ≥ 0 for all
independent sets I ⊆ B.

Proposition 1.1. ([15]) Suppose that p satisfies the
Shearer criterion. Then any probability space with the
given dependency structure and probabilities PΩ = p has
a positive probability that none of the bad events B are
true.

Suppose that p do not satisfy the Shearer criterion.
Then there is a probability space Ω with the given
dependency structure and probabilities PΩ = p for
which, with probability one, at least one B ∈ B is true.

Proposition 1.2. ([15]) Suppose that p(B) ≤ p′(B)
for all B ∈ B. Then, if p′ satisfies the Shearer criterion,
so does p.

One useful parameter for us will be the following:

Definition 1.1. For any bad event B, define the mea-

sure of B to be µ(B) = Q({B},PΩ)
Q(∅,PΩ) .

In [11], Kolipaka & Szegedy showed that if the
Shearer criterion is satisfied, then the Resampling Al-
gorithm terminates with probability one. Furthermore,
the run-time of the Parallel and Sequential Resampling
Algorithms can be bounded in terms of the measures µ.

Proposition 1.3. ([11]) The expected number of re-
samplings of any B ∈ B is at most µ(B).

This leads us to define the work parameter for the
LLL by W =

∑

B∈B µ(B).
Although the sequential Resampling Algorithm can

often work well when the Shearer criterion is satisfied
(almost) exactly, for the parallel Resampling Algorithm
one must often satisfy it with a small slack.

Definition 1.2. We say that the Shearer criterion is
satisfied with ǫ-multiplicative slack, if the vector of
probabilities (1 + ǫ)PΩ satisfies the Shearer criterion.

It it extremely difficult to directly show that the
Shearer criterion is satisfied in a particular instance.
There are alternative criteria, which are weaker than
the full Shearer criterion but much easier to work
with computationally. Perhaps the simplest is the
asymmetric LLL criterion. The connection between the
Shearer criterion and the asymmetric LLL criterion was
shown by Kolipaka & Szegedy in [11].

Theorem 1.4. Suppose that there is a weighting func-
tion x : B → (0, 1) satisfying

∀B ∈ B PΩ(B)(1 + ǫ) ≤ x(B)
∏

B′∼B

(1 − x(B′))

Then the Shearer criterion is satisfied with multiplica-
tive ǫ-slack, and µ(B) ≤ x(B)/(1−x(B)) for all B ∈ B.

This was extended to the cluster-expansion LLL
criterion of [2] by Harvey & Vondrak in [10]:

Theorem 1.5. ([10]) Suppose that there is a weighting
function µ̃ : B → [0,∞) satisfying

∀B ∈ B µ̃(B) ≥ PΩ(B)(1+ǫ)
∑

I⊆N(B)
I independent

∏

B′∈I

µ̃(B′)

Then the Shearer criterion is satisfied with multiplica-
tive ǫ-slack, and µ(B) ≤ µ̃(B).

For the remainder of this paper, we will always
assume, unless stated otherwise, that our probability
space satisfies the Shearer criterion with ǫ-multiplicative
slack. We will occasionally derive certain results for the
symmetric LLL criterion as a corollary of results on the
full Shearer criterion.

2 The witness DAG and related structures

There are two key analytical tools introduced by Moser
& Tardos to analyze their algorithm: the resampling
table and witness trees.

The resampling table R is a table of values R(i, t),
where i ranges over the variables 1, . . . , n and t ranges
over the natural numbers 1, 2, Each cell R(i, t) is
drawn independently from the distribution on the vari-
able i, that R(i, t) = j with probability pij , indepen-
dently of all other cells. The intent of this table is that,
instead of choosing new values for the variables in “on-
line” fashion, we precompute the future values of all the
variables. The first entry in the table R(i, 1), is the ini-
tial value for the variable Xi; on the tth resampling, we
set Xi = R(i, t + 1).4

4Although nominally the resampling table provides a count-
ably infinite stream of values for each variable, in practice we will

only need to use approximately ǫ
−1 log n distinct values for each

variable.

1173 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

The witness tree is a structure which records the
history of all variables involved in a given resampling.
Moser & Tardos give a very clear and detailed descrip-
tion of the process for forming witness trees; we pro-
vide a simplified description here. Suppose that we
run the resampling algorithm and resample bad events
B1, . . . , Bt (the algorithm has not necessarily termi-
nated by this point). We build a witness-tree τ̂t for
the tth resampling, as follows. We place a node labeled
by Bt at the root of the tree. We then go backwards
in time for j = t − 1, . . . , 1. For each Bj , if there is a
node v′ in the tree labeled by B′ ∼ Bj , then we add
a new node v labeled by Bj as a child of v′; if there
are multiple choices of v′, we always select the one of
greatest depth (breaking ties arbitrarily.) If there is no
such node v′, then we do not add any nodes to the tree
for that value of j.

2.1 The witness DAG. The witness tree τ̂ only
provides an explanation for the single resampling at
time t. It may discard some information about other
resamplings that were not relevant to time t. We now
consider a related object, the witness DAG, that can
record information about multiple resamplings, or all of
the resamplings.

A witness DAG is a directed acyclic graph, whose
nodes are labeled by bad events. For nodes v, v′ ∈ G,
we write v ≺ v′ if there is an edge from v to v′. We
further impose two requirements. First, if nodes v, v′

are labeled by B, B′ and B ∼ B′, then either v ≺ v′ or
v′ ≺ v; if B 6∼ B′ then there is no edge between v, v′.
We refer to this as the comparability condition.

We let |G| denote the number of vertices in a witness
DAG G.

It is possible that a witness DAG can contain
multiple nodes with the same label. However, because of
the comparability condition, all such nodes are linearly
ordered by ≺. Thus, for any witness DAG G and any
B ∈ B, one can unambiguously sort the nodes of G
labeled by B. Thus, we use the notation (B, k) to
mean that node v is the kth node of G labeled by B.
For any node v, we refer to this ordered pair (B, k) as
the extended label of v. Every node in a witness DAG
receives a distinct extended label. We emphasize that
this is a notational convenience, as an extended label of
a node can be recovered from the witness DAG G along
with its un-extended labels.

Given a full execution of the Resampling Algorithm,
one can form a a particularly important witness DAG
Ĝ which we refer to as the full witness DAG, as follows.
Suppose that we resample bad events B1, . . . , Bt. Then
Ĝ has vertices v1, . . . , vt which are labeled B1, . . . , Bt.
We place an edge from vi to vj iff i < j and Bi ∼

Bj . It is not hard to see that this graph is indeed a
witness DAG as we have defined it. We emphasize that
Ĝ is a random variable, and we distinguish between
this notion and that of a witness DAG (which is a
non-random variable). The full witness DAG (under
different terminology) was analyzed by Kolipaka &
Szegedy in [11], and we will use their results in numerous
places. However, we will also consider partial witness
DAGs, which record information about only a subset of
the resamplings. As we will see, these partial witness
DAGs can be useful even when we wish to analyze the
full set of resamplings.

As witness trees and single-sink witness DAGs are
closely related, we will often use the notation τ for a
single-sink witness DAG.

2.2 Compatibility conditions for witness DAGs

and resampling tables In the Moser-Tardos proof,
a method was shown for converting an execution log
into a witness tree, and necessary conditions were given
for a witness tree being produced in this fashion in
terms of its consistency with the resampling table.
We will instead use these conditions as a definition of
compatibility.

Definition 2.1. (Path of a variable) Let G be a
witness DAG. For any i ∈ [n], let G[i] denote the
subgraph of G induced on all vertices v labeled by B with
i ∈ SB. Because of the comparability condition, G[i] is
linearly ordered by ≺; thus we refer to G[i] as the path
of variable i.

Definition 2.2. (Configuration of v) Let G be a
witness DAG and R a resampling table. Let v ∈ G
be labeled by B. For each i ∈ SB, let yv,i denote the
number of vertices w ∈ G[i] such that w ≺ v.

We now define the configuration of v by

Xv
G(i) = R(i, 1 + yv,i)

Definition 2.3. (Compatibility) For a witness
DAG G and a resampling table R, we say that G is
compatible with R if, for all nodes v ∈ G labeled by
B ∈ B, it is the case that B is true on the configuration
Xv

G.
Note that this is well-defined because because Xv

G

assigns values to all the variables in SB.

The following are key results used by Moser &
Tardos to bound the running time of their resampling
algorithm:

Definition 2.4. (Weight of a DAG) Let G be any
witness DAG, whose nodes are labeled by bad events
B1, . . . , Bs. We define the weight of G to be w(G) =
∏s

k=1 PΩ(Bk).

1174 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Proposition 2.1. Let G be any witness DAG. For a
random resampling table R, G is compatible with R with
probability w(G).

Proof. For any node v ∈ G, note that Xv
G follows the

law of Ω, and so the probability that B is true of the
configuration Xv

G is PΩ(B). Next, note that each node
v ∈ G imposes conditions on disjoint sets of entries of
R, and so these events are independent.

The following result shows how witness DAGs and
resampling tables are related to the Resampling Algo-
rithm:

Proposition 2.2. Suppose we run the Resampling Al-
gorithm, taking values for the variables from the resam-
pling table R. Then Ĝ is compatible with R.

Proof. Suppose there is a node v ∈ Ĝ with an extended
label (B, k). Thus, B must be resampled at least k
times. Suppose that the kth resampling occurs at time
t. Let Y be the configuration at time t, just before this
resampling. We claim that, for all i ∈ SB , we have
Y (i) = Xv

Ĝ
(i). For, the graph Ĝ must contain all the

resamplings involving variable i. All such nodes would
be connected to vertex v (as they overlap in variable i),
and those that occur before time t are precisely those
that have an edge to v. So yv,i is exactly the number of
bad events up to time t that involve variable i. Thus,
just before the resampling at time t, variable i was on
its 1+yv,i resampling. So Y (i) = R(i, 1+yv,i) = Xv

Ĝ
(i),

as claimed.
Now, in order for B to be resampled at time t, it

must have been the case that B was true, i.e., that B
held on configuration Y . However, since Y agrees with
Xv

Ĝ
on SB , it must be also be the case that B holds on

configuration Xv
Ĝ

. Since this is true for all v, it follows
that G is compatible with R.

2.3 Prefixes of a witness DAG A witness DAG
G records information about many resamplings. If
we are only interested in the history of a subset of
its nodes, then we can form a prefix subgraph which
discards irrelevant information.

Definition 2.5. (Prefix graph) For any vertices
v1, . . . , vl ∈ V , let G(v1, . . . , vl) denote the subgraph of
G induced on all vertices which have a path to at least
one of v1, . . . , vl.

If H is a subgraph of G with H = G(v1, . . . , vl) for
some v1, . . . , vl ∈ G, then we say that H is a prefix of
G.

Using Definition 2.5, we can give a more compact
definition of the configuration of a node:

Proposition 2.3. For any witness DAG G and v ∈ G,
we have Xv

G(i) = R(i, |G(v)[i]|).

Proof. Suppose that v is labeled by B. The graph
G(v)[i] contains precisely v itself and the other nodes
w ∈ G[i] with w ≺ v. So |G(v)[i]| = yv,i + 1.

Proposition 2.4. Suppose G is compatible with R and
H is a prefix of G. Then H is compatible with R.

Proof. Suppose H = G(v1, . . . , vl).
Consider w ∈ H labeled by B. We claim that

H(w) = G(w). For, consider any u ∈ H(w). So u
has a path to w in H; it also must have a path to w in
G. On the other hand, suppose u ∈ G(w), so u has a
path p to w in G. As w has a path to one of v1, . . . , vl,
this implies that every vertex in the path p also has such
a path. Thus, the path p is in H, and hence u has a
path in H to w, so u ∈ H(w).

Next, observe that for any i ∈ SB we have

Xw
G(i) = R(i, |G(w)[i]|) = R(i, |H(w)[i]|) = Xw

H(i)

and by hypothesis, B is true on Xw
G .

2.4 Counting witness trees and witness DAGs

If we are given a collection of witness DAGs G, we define
the total weight of G as

∑

G∈G w(G). In this section,
we count the total weight of certain classes of witness
DAGs. In light of Proposition 2.1, these will upper-
bound the expected number of resamplings.

Proposition 2.5. ([11]) Let B ∈ B. Then the total
weight of all witness DAGs with a single sink node
labeled B, satisfies

∑

τ has single sink node B

w(τ) ≤ µ(B).

Proof. For any witness DAG G with a single sink node
v labeled B, define I ′j for j = 0, . . . ,∞ inductively as
follows. I ′0 = {v}, and I ′j+1 is the set of vertices in G
whose out-neighbors all lie in I ′0∪· · ·∪I ′j . Let Ij denote
the labels of the vertices in I ′j ; so I0 = {B}.

Now observe that by the comparability condition
each set Ij is an independent set, and for each B′ ∈ Ij+1

there is some B′′ ∼ B′, B′′ ∈ Ij . Also, the mapping
from G to I0, . . . , Ij is injective. We thus may sum over
all such I1, . . . , I∞ to obtain an upper bound on the
weight of such witness DAGs. In [11] Theorem 14, this
sum is shown to be Q({B}, PΩ)/Q(∅, PΩ) (although the
notation they use is slightly different.)

We will now take advantage of the ǫ-multiplicative
slack in our probabilities.

1175 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Definition 2.6. (Adjusted weight) For any wit-
ness DAG G, we define the adjusted weight with respect
to rate factor ρ by

aρ(G) = w(G)(1 + ρ)|G|.

Observe that w(G) = a0(G).

Proposition 2.6. For any variable i ∈ [n] and any
ρ ∈ [0, ǫ), we have

∑

B∼i

∑

τ has single sink node
labelled B

aρ(τ) ≤ 1 + ρ

ǫ − ρ
.

Proof. Let V = {B | i ∈ SB}.
The probabilities (1+ǫ)PΩ satisfy the LLL criterion,

and by Proposition 1.2 so must (1 + ρ)PΩ. Now,
applying Proposition 2.5 to the probabilities (1 + ρ)PΩ,
we have that
(2.3)

∑

B∈V

∑

τ has
single sink node B

aρ(τ) ≤
∑

B∈V

Q({B}, (1 + ρ)PΩ)

Q(∅, (1 + ρ)PΩ)

Our next task is to bound the RHS of (2.3).
Consider the probability vector p defined by

p(B) =

{

(1 + ǫ)PΩ(B) if B ∈ V

(1 + ρ)PΩ(B′) if B /∈ V

Note that p ≤ (1+ ǫ)PΩ and so by Propositions 1.1,
1.2 we have Q(∅, p) > 0. But now consider that we have

Q(∅, p) =
∑

I⊆B
I independent

(−1)|I|
∏

B′∈I

p(B′)

=
∑

V ⊆I⊆B
I independent

(−1)|I|
∏

B∈I

p(B)

+
∑

I⊆B−V
I independent

(−1)|I|
∏

B∈I

p(B)

=
∑

B∈V

(1 + ǫ)PΩ(B)
∑

B∈I⊆B
I independent

(−1)|I|
∏

B′∈I
B′ 6=B

(1 + ρ)PΩ(B′)

+
∑

I⊆B−V
I independent

(−1)|I|
∏

B∈I

(1 + ρ)PΩ(B)

=
∑

B∈V

(ǫ − ρ)PΩ(B)
∑

B∈I⊆B
I independent

(−1)|I|
∏

B′∈I
B′ 6=B

(1 + ρ)PΩ(B′)

+
∑

I⊆B
I independent

(−1)|I|
∏

B∈I

(1 + ρ)PΩ(B)

=
−(ǫ − ρ)

1 + ρ

∑

B∈V

Q({B}, (1 + ρ)PΩ) + Q(∅, (1 + ρ)PΩ)

We may now compute the sum over B ∈ V as:

∑

B∈V

Q({B}, (1 + ρ)PΩ)

Q(∅, (1 + ρ)PΩ)

=

∑

B∈V Q({B}, (1 + ρ)PΩ)

Q(∅, p) + (ǫ−ρ)
1+ρ

∑

B∈V Q({B}, (1 + ρ)PΩ)

≤
∑

B∈V Q({B}, (1 + ρ)PΩ)
(ǫ−ρ)
1+ρ

∑

B∈V Q({B}, (1 + ρ)PΩ)

as Q(∅, p) > 0

=
1 + ρ

ǫ − ρ

Corollary 2.1. ([11]) The total weight of all single-
sink witness DAGs satisfies

∑

single-sink witness DAGs τ

w(τ) ≤ n/ǫ

Proof. We have

∑

single sink witness DAGs τ

w(τ)

≤
∑

i

∑

τ has a single sink node
labeled by some B ∼ i

w(τ)

≤
∑

i

ǫ−1 by Proposition 2.6

= n/ǫ

Proposition 2.7. For r ≥ 1+1/ǫ, the expected number
of single-sink witness DAG compatible with R contain-
ing more than r nodes is at most enr(1 + ǫ)−r

Proof. Summing over such DAGs:

∑

τ has single sink node
|τ |≥r

P (τ compatible with R)

=
∑

τ has single sink node
|τ |≥r

w(τ)

≤ (1 + ρ)−r
∑

τ has single sink node
|τ |≥r

w(τ)(1 + ρ)|τ |

for any ρ ∈ [0, ǫ]

≤ (1 + ρ)−r
∑

τ has single sink node
|τ |≥r

aρ(τ)

1176 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

≤ (1 + ρ)−r
∑

i∈[n]

∑

B|i∈SB

∑

τ has single sink node B
|τ |≥r

aρ(τ)

≤ (1 + ρ)−rn
1 + ρ

ǫ − ρ
by Proposition 2.6

Now take ρ = ǫ − (1 + ǫ)/r. By our condition
r ≥ 1 + 1/ǫ we have ρ ∈ [0, ǫ] and so Proposition 2.6
applies. Hence the expected number of such witness
DAGs is thus at most n rr

(r−1)r−1(1+ǫ)r ≤ enr(1 + ǫ)−r.

Corollary 2.2. Whp, all single-sink witness DAGs

compatible with R contain O(log(nǫ−1)
ǫ) nodes. Whp all

but 10 log n
ǫ single-sink witness DAGs compatible with R

contain at most 10 log n
ǫ nodes.

Proof. This follows immediately from Markov’s inequal-
ity and Proposition 2.7.

Corollary 2.3. Whp, all witness DAGs compatible
with R have height O(log n

ǫ).

Proof. Suppose that there is a witness DAG G of height
T compatible with R. Then for i = 1, . . . , T there is
a single-sink witness DAG of height i compatible with
R, and all such DAGs are distinct. (Select a node v
of height i, and set Gi = G(vi).) This implies that
there Ω(T) single-sink witness DAGs of height Ω(T)
compatible with R. By Proposition 2.2, this implies
T = O(log n

ǫ).

With this Corollary 2.3, we are able to give a better
bound on the complexity of the Parallel Resampling
algorithm. The following Proposition 2.8 is remarkable
in that the complexity is phrased solely in terms of the
number of variables n and the slack ǫ, and is otherwise
independent of B.

Proposition 2.8. Suppose that the Shearer criterion
is satisfied with ǫ-multiplicative slack.

Whp, the Parallel Resampling Algorithm terminates
after O(log n

ǫ) rounds.
Suppose we have a Bad-Event Checker in time T

and polynomial processors. Then the total complexity of

the Parallel Resampling Algorithm is O((log n)(T+log2 n)
ǫ)

time and ǫ−1nO(1) processors.

Proof. An induction on i shows that if the Parallel
Resampling Algorithm runs for i steps, then Ĝ has
depth i, and it is compatible with R. But Corollary 2.3
shows that, whp, this implies that i = O(log n

ǫ).
This implies that the total time needed to identify

true bad events is O(iT) ≤ O(T log n
ǫ).

Now, suppose that at stage i the number of bad
events which are currently true is vi. Then the to-
tal work spent computing the maximal independent
sets, over the full algorithm, is

∑t
i=1 O(log2 vi) ≤

O(t log2(
∑

vi/t)). On the other hand, for each bad
event which is at true at each stage, one can construct
a corresponding witness tree, and all such trees are
unique. Hence, E[

∑

vi] ≤ W ≤ n/ǫ. At t ≤ log n
ǫ ,

we have E[t log2(
∑

vi/t)] ≤ ǫ−1 log3 n. This shows the
bound on the time complexity of the algorithm.

Now suppose we can enumerate all the currently
true bad events. The expected number of bad events
which are ever true is at most the weight of all single-
sink witness DAGs, which is W ≤ n/ǫ. By Markov’s
inequality, whp the total number of bad events which
are ever true is bounded by ǫ−1nO(1).

We contrast this with a qualitatively similar result
in Kolipaka & Szegedy, which shows that Parallel Re-
sampling Algorithm terminates, with constant proba-
bility, after n/ǫ log(n/ǫ) rounds.

3 Concentration for the number of resamplings

Although the main focus of this paper is to create a
parallel algorithm for the LLL, using our results on
witness DAGs we are able to show a powerful result for
the runtime of the sequential Resampling Algorithm.

The expected number of resamplings for the Re-
sampling Algorithm is at most W . Suppose we wish to
ensure that the number of resamplings is bounded with
high probability, not merely in expectation. One simple
way to achieve this would be to run log n instances of the
Resampling Algorithm in parallel; this is a generic am-
plification technique which ensures that whp the total
number of resamplings performed will be O(W log n).

Can we avoid this extraneous factor of log n? In this
section, we answer this question in the affirmative by
giving a concentration result for the number of resam-
plings. We show that whp the number of resamplings
will not exceed O(W) (assuming that W is sufficiently
large).

We note that the straightforward approach here
would be the following: the probability that there are
T resamplings is at most the probability that there is
a T -node witness DAG compatible with R; this can be
upper-bounded by summing the weights of all such T -
node witness DAGs. This straightforward approach can
only the weaker result that number of resamplings is
bounded by O(W/ǫ).

We contrast our result with Kolipaka & Szegedy
[11], which shows that the Resampling Algorithm ter-
minates after O(n2/ǫ + n/ǫ log(1/ǫ)) resamplings with
constant probability. In [1], a similar type of concen-

1177 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

tration result is shown: they show that in the sym-
metric LLL setting, their algorithm (which is a vari-
ant/generalization of the Moser-Tardos algorithm) per-
forms O(n/ǫ) resamplings whp.

Proposition 3.1. Given any distinct bad events
B1, . . . , Bs, the total weight of all witness DAGs with
s sink nodes labeled B1, . . . , Bs, is at most

∏s
i=1 µ(Bi).

Proof. We define a function F which which maps s-
tuples (τ1, . . . , τs) of single-sink witness DAGs with
sink nodes labeled respectively B1, . . . , Bs, to witness
DAGs G = F (τ1, . . . , τs) whose sink nodes are labeled
B1, . . . , Bs. The function is defined by first forming the
disjoint union of the graphs τ1, . . . , τs. We then add an
edge from a node B ∈ τi to B′ ∈ τj iff i < j and B ∼ B′.

Now, consider any witness DAG G whose sink nodes
v1, . . . , vs are labeled B1, . . . , Bs. For i = 1, . . . , j, define
τi recursively by

τi = G(vi) − τ1 − · · · − τi−1

Note that each τi contains the sink node vi, so it is non-
empty. Also, all the nodes in τi are connected to vi, so
τi indeed has a single sink node. Finally, every node of
G has a path to one of v1, . . . , vj , so it must in exactly
one τi.

Thus, for each witness DAG G with sink nodes
labeled B1, . . . , Bs, there exist s separate single-sink
witness DAGs τ1, . . . , τs such that G = F (τ1, . . . , τs),
and furthermore such that the nodes of G are the
union of the nodes of τ1, . . . , τs. In particular, w(G) =
w(τ1) · · ·w(τs). So we have:

∑

G has s sink nodes B1, . . . , Bs

w(G)

≤
∑

τ1,...,τs

w(τ1) . . . w(τs)

=

s
∏

i=1

∑

τ has single sink node Bi

w(τ)

≤
s

∏

i=1

µ(Bi) by Proposition 2.5

Theorem 3.1. Whp, the total number of resamplings
made the Resampling Algorithm is at most O(W +
log2 n

ǫ).

Proof. First, consider the expected number of witness
DAGs which are compatible with R and which contain
exactly s sink nodes; here s is a parameter to be
specified later. Each of these s sink nodes must receive
distinct labels. We can estimate this quantity as

∑

G has s sink nodes

P (G compatible with R)

≤
∑

G has s sink nodes

w(G)

≤
∑

B1, . . . , Bs distinct

∑

G has sink nodes
labeled B1, . . . , Bs

w(G)

≤
∑

B1, . . . , Bs distinct

µ(B1) . . . µ(Bs)

by Proposition 3.1

≤ 1

s!
(
∑

B∈B

µ(B))s =
W s

s!

Now, suppose that the Resampling Algorithm runs
for t time-steps, and consider the event E that t ≥
c(W + log2 n

ǫ) where c is some sufficiently large constant
(to be determined).

Let Ĝ be the full witness DAG of the resulting
execution. Each resampling at time i ∈ {1, . . . , t}
corresponds to some vertex vi in Ĝ.

By Proposition 2.2, all but 10 log n
ǫ single-sink wit-

ness DAGs contain at most 10 log n
ǫ nodes. Now, let X

denote the set {i | |Ĝ(vi)| ≤ h} where h = 10logn
ǫ . Un-

der our assumption, we must have |X| ≥ t− 10 log n
ǫ ; for

c sufficiently large, we have |X| ≥ t/2.
For each i = 1, . . . , |X| let xi denote the ith largest

element of X and let ui = vxi
, and let Hi = G(ui).

Suppose that we now select indices |X| ≥ i1 > i2 >
i3 > · · · > is−1 > is ≥ 1, satisfying ij /∈ Hi1∪· · ·∪Hij−1

for all j = 1, . . . , s.
The subgraph Ĝ(ui1 , . . . , uis

) must contain ex-
actly s sink nodes ui1 , . . . , uis

. Furthermore, for any
such choice of i1, . . . , ij , the resulting witness DAGs

Ĝ(ui1 , . . . , uis
) are distinct. Finally, by Proposition 2.4

each such witness DAG is compatible with R.
Hence, the number of single-sink witness DAGs

compatible with R must be at least the number of such
s-tuples of indices, which is

∑

1≤i1≤t/2

∑

i2<i1
i2 /∈Hi1

∑

i3<i2
i3 /∈Hi1

∪Hi2

· · ·
∑

is<is−1

is /∈Hi1
∪Hi2

∪···∪His−1

1

By Proposition 3.2 (which we defer to after this
proof), under the assumption that |Hj | ≤ h for all j,

this expression is at least
(

t/2−(s−1)h
s

)

≥ (t/2−sh)s

s! .
Hence, we have shown that, barring low-probability

events, E requires that the number of witness DAGs

with s sink nodes compatible with R is at least (t/2−sh)s

s! .
As the expected number of such DAGs is at most W s/s!,
by Markov’s inequality we have P (E) ≤ W s/(t/2−sh)s.

1178 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Now set s = t
4h . Then this can be bounded by

W s

(t/2 − sh)s
= (4W/t)s

≤ 2−s for t ≥ 8W

= n−Ω(1) for t ≥ Ω(
log2 n

ǫ
)

And thus P (E) ≤ n−Ω(1) as well.

Corollary 3.1. The Resampling Algorithm performs
O(n

ǫ) resamplings whp.

Proof. We have W =
∑

B µ(B) ≤ ∑

i

∑

B∼i µ(B) ≤
n/ǫ. Thus, by Theorem 3.1, with high probability
the total number of resamplings made the Resampling
Algorithm is at most O(n

ǫ + ǫ−1 log2 n) = O(n
ǫ).

For the symmetric LLL, we can even obtain concen-
tration without the need for the multiplicative ǫ-slack.

Corollary 3.2. If the symmetric LLL criterion
ep(d + 1) ≤ 1 is satisfied, then whp the number of re-
samplings is O(n + d log2 n).

Proof. Set x(B) = 1
d+1 for all B ∈ B. Now a simple

calculation shows that we satisfy the asymmetric LLL
condition for ǫ = e(d/(1 + d))d − 1 = Ω(1/d). Thus
µ(B) ≤ x(B)/(1 − x(B)) = 1/d, and so W ≤ m/d. We
also may observe that m ≤ nd. So, by Theorem 3.1, the
total number of resamplings is, with high probability
O(n + d log2 n).

To finish this proof, we need to show the following
simple combinatorial bound:

Proposition 3.2. Suppose that A is a set of positive
integers of cardinality |A| = t. Suppose that for each
j ∈ Z there is a set of positive integers Ij, with |Ij | ≤ h
for all j. Define

f(A, s, I) =
∑

i1∈A

∑

i2<i1
i2∈A−Ii1

∑

i3<i2
i3∈A−Ii1

−Ii2

. . .
∑

is<is−1

is∈A−Ii1
−···−Iis−1

1

Then we have

f(A, s, I) ≥
(

t − (s − 1)h

s

)

Proof. We prove this by induction on s. When s = 1
we have

f(A, 1, I) =
∑

i1∈A

1 = t =

(

t − (1 − 1)h

1

)

as claimed.

So we consider the induction step. Suppose that
A = {a1, . . . , at}, and suppose that we select the
value i1 = aj . Then observe that the remaining sum
over i2, . . . , is is equal to f(A′

j , s − 1, I), where A′
j =

{a1, . . . , aj−1}− Ii1 which is a set of cardinality at least
j − 1 − h.

Summing over all j = 1, . . . , t gives us:

f(A, s, I) =

t
∑

j=1

f(A′
j , s − 1, I)

≥
t

∑

j=(s−1)h+s

f(A′
j , s − 1, I)

≥
t

∑

j=(s−1)(h+1)

(

(j − 1 − h) − (s − 2)h

s − 1

)

by inductive hypothesis

=

t−1−h(s−1)
∑

j=s−1

(

j

s − 1

)

=

(

t − (s − 1)h

s

)

and the induction is proved.

4 Mutual consistency of witness DAGs

In Section 2, we have seen conditions for witness DAGs
to be compatible with a given resampling table R. In
this section, we examine when a set of witness DAGs
can be mutually consistent, in the sense that they could
all be prefixes of some (unspecified) full witness DAG.

Definition 4.1. (Consistency of G, G′) Let G, G′

be witness DAGs. We say that G is consistent with
G′ is, for all variables i, either G[i] is an initial seg-
ment of G′[i] or G′[i] is an initial segment of G[i], both
of these as labeled graphs. (Carefully note the presence
of the quantifier here: If n = 2 and G[1] is an initial
segment of G′[1] and G′[2] is an initial segment of G[2],
then G, G′ are compatible.)

Let G be any set of witness DAGs. We say that G
is pairwise consistent if G, G′ are consistent with each
other for all G, G′ ∈ G.

Proposition 4.1. Suppose H1, H2 are prefixes of G.
Then H1 is consistent with H2.

Proof. Observe that for any w1 ≺ w2 ∈ Hj , we must
have w1 ∈ Hj as well. It follows that Hj [i] is an initial
segment of G[i] for any i ∈ [n]. As both H1[i] and H2[i]
are initial segments of G[i], one of them must be an
initial segment of the other.

Definition 4.2. (Merge) Let G, G′ be consistent wit-
ness DAGs. Then we define the merge G∨G′ as follows.

1179 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

If either G or G′ has a node v with an extended label
(B, k), then we create a corresponding node w ∈ G∨G′

labeled by B. We refer to the corresponding label of w
as (B, k).

Now, let v1, v2 ∈ G ∨ G′ have corresponding label
(B1, k1) and (B2, k2). We create an edge from v1 to
v2 if either G or G′ has an edge between vertices with
extended label (B1, k1), (B2, k2) respectively.

Proposition 4.2. Suppose that, when forming G∨G′,
that v ∈ G ∨ G′ has corresponding label (B, k). Then v
has extended label (B, k).

Proof. Because of our rule for forming edges in G ∨G′,
the only edges that can go to v from other nodes labeled
B, would have corresponding labels (B, l) for l < k.
Thus, there are at most k − 1 nodes labeled B with an
edge to v.

On the other hand, there must be nodes with
extended label (B, k) in G or G′; say without loss of
generality the first. Then G must also have nodes
with extended labels (B, 1), . . . , (B, k − 1). These
correspond to vertices w1, . . . , wk−1 with corresponding
labels (B, 1), . . . , (B, k − 1), all of which have an edge
to v. So there are at least k − 1 nodes labeled B with
an edge to v.

Thus, there are exactly k nodes in G with an edge
to v and hence v has extended label (B, k).

By Proposition 4.2, for every vertex v ∈ G or
v ∈ G′, there is a vertex in G ∨ G′ with the same
extended label. We will abuse notation slightly, so that
we refer to this vertex in H also by the name v.

Proposition 4.3. Let G, G′ be consistent witness
DAGs and let H = G ∨ G′. If there is a path v1, . . . , vl

in H and vl ∈ G, then also v1, . . . , vl ∈ G.

Proof. Suppose that this path has corresponding labels
(B1, k1), . . . , (Bl, kl). Suppose i ≤ l is minimal such
that vi, . . . , vl are all in G. (This is well-defined as
vl ∈ G). If i = 1 we are done.

Otherwise, we have vi ∈ G, vi−1 ∈ G′ − G. Note
that Bi−1 ∼ Bi, so let j ∈ SBi−1

∩ SBi
. Note that

vi ∈ G[j], vi−1 ∈ G′[j]. But observe that in H there is
an edge from vi−1 to vi. As vi−1 /∈ G, this edge must
have been present in G′. So G′[j] contains the vertices
vi−1, vi, in that order, while G[j] contains only the
vertex vi. Thus, neither G[j] or G′[j] can be an initial
segment of the other. This contradicts the hypothesis.

Proposition 4.4. Let G, G′ be consistent witness
DAGs and let H = G ∨ G′. Then H is a witness DAG
and both G and G′ are prefixes of it.

Proof. Suppose that H contains a cycle v1, . . . , vl, v1,
and suppose v1 ∈ G. Then by Proposition 4.3 the
cycle v1, . . . , vl, v1 is present also in G, which is a
contradiction.

Next, we show that the comparability condition
holds for H. Suppose that (B1, k1) and (B2, k2) are
the corresponding labels of vertices in H, and B1 ∼ B2.
So let i ∈ SB1

∩SB2
. Without loss of generality, suppose

that G[i] is an initial segment of G′[i]. So it must be
that (B1, k1) and (B2, k2) appear in G′[i]. Because of
the comparability condition for G′, there is an edge in
G′ on these vertices, and hence there is an edge in H as
well.

Finally, we claim that G = H(v1, . . . , vl) where
v1, . . . , vl are the vertices of G. It is clear that G ⊆
H(v1, . . . , vl). Now, suppose w ∈ H(v1, . . . , vl). Then
there is a path w, x1, x2, . . . , xl, v where the vertices
x1, . . . , xl lie in H and v ∈ G. By Proposition 4.3, this
implies that w, x1, . . . , xl, v ∈ G. So w ∈ G and we are
done.

Proposition 4.5. The operation ∨ is commutative
and associative.

Proof. Commutativity is obvious from the symmetric
way in which ∨ was defined. To show associativity, note
that we can give the following symmetric characteriza-
tion of H = (G1 ∨G2)∨G3. If G1, G2 or G3 has a node
labeled (B1, k1) then so does H. We have an edge from
(B1, k1) to (B2, k2) if there is such an edge in G1, G2 or
G3.

Proposition 4.6. Suppose G1, G2 are consistent with
each other and with some witness DAG G3. Then
G1 ∨ G2 is consistent with G3.

Proof. For any variable i ∈ [n], note that either G1[i] is
an initial segment of G2[i] or vice-versa. Also note that
(G1 ∨ G2)[i] is the longer of G1[i] or G2[i].

Now we claim that for any variable i, either G3[i] is
an initial segment of (G1∨G2)[i] or vice-versa. Suppose
without loss of generality that G1[i] is an initial segment
of G2[i]. Then (G1 ∨ G2)[i] = G1[i]. By definition of
consistency, either G1[i] is an initial segment of G3[i] or
vice-versa. So (G1 ∨G2)[i] is an initial segment of G3[i]
or vice-versa.

In light of these propositions, we can unambiguously
define, for any pairwise consistent set of witness DAGs
G = {G1, . . . , Gl}, the merge

∨

G = G1 ∨ G2 ∨ G3 · · · ∨ Gl

The notation suggests that this may depend on the
ordering G1, . . . , Gl, but because of associativity and

1180 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

commutativity this can be well-defined in terms of the
un ordered set {G1, . . . , Gl}.

We can give another characterization of pairwise
consistency, which is more illuminating although less
explicit:

Proposition 4.7. The witness DAGs G1, . . . , Gl are
pairwise consistent iff there is some witness DAG H
such that G1, . . . , Gl are all prefixes of H.

Proof. For the forward direction: let H = G1 ∨ · · ·∨Gl.
By Proposition 4.4, each Gi is a prefix of H. For the
backward direction: by Proposition 2.5, any Gi1 , Gi2

are both prefixes of H, hence consistent.

Proposition 4.8. Let G1, G2 be consistent witness
DAGs and R a resampling table. Then G1 ∨G2 is com-
patible with R iff both G1 and G2 are compatible with
R.

Proof. For the forward direction: let v ∈ G1 labeled by
B. By Proposition 4.3, we have G1(v) = (G1 ∨ G2)(v).
Thus for i ∈ SB we have |G1(v)[i]| = |(G1 ∨ G2)(v)[i]|.
This implies that Xv

G1
= Xv

G1∨G2
. By hypothesis, B

is true on Xv
G1∨G2

and hence Xv
G1

. As this is true for
all v ∈ G1, it follows that G1 is compatible with R.
Similarly, G2 is compatible with R.

For the backward direction: Let v ∈ G1 ∨ G2.
Suppose without loss of generality that v ∈ G1. As
in the forward direction, we have Xv

G1
= Xv

G1∨G2
; by

hypothesis B is true on the former so it is true on the
latter. Since this holds for all v ∈ G1 ∨ G2, it follows
that G1 ∨ G2 is compatible with R.

5 A new parallel algorithm for the LLL

In this section, we will develop a parallel algorithm to
enumerate all the single-sink witness DAGs which are
compatible with R. This will allow us to enumerate
(implicitly) all witness DAGs compatible with R. In
particular, we are able to simulate all the possible values
for Ĝ, the full witness DAG. We are able to do this
without actually running the Resampling Algorithm.

In a sense, both the Parallel Resampling Algorithm
and our new parallel algorithm are building up Ĝ.
However, the Parallel Resampling Algorithm does this
layer by layer, in an inherently sequential way: it does
not determine layer i + 1 until it has fixed a value for
layer i, and resolving each layer requires a separate MIS
calculation.

Our algorithm dispenses with this MIS calculation
at each stage. As a result, it is not able to completely
resolve layer i before moving on to layer i+1. There are
multiple possible values for layer i, and our algorithm
computes all the possible layer i+1-witness DAGs which

they could lead to. Although the number of such witness
DAGs is exponential, we can still do this efficiently
because they can be built out of single-sink witness
DAGs compatible with R. These are only polynomial
in number, and can be processed in parallel.

5.1 Collectible witness DAGs The goal of our
algorithm is to enumerate the single-sink witness DAGs
(nearly equivalently, the witness trees.) We will build
them up node-by-node. However, in order to do so,
we must keep track of a slightly more general type of
witness DAGs, namely, those derived by removing the
root node from a single-sink witness DAG. Such witness
DAGs have multiple sink nodes, which are all at distance
two in the dependency graph. Although this is a much
larger set than the set of single-sink witness DAGs, it
is still small enough to enumerate. This is very close to
the concept of partial witness trees introduced in [3].

Definition 5.1. (Collectible witness DAG)
Suppose we are given a witness DAG G, whose sink
nodes are labeled B1, . . . , Bs. We say that G is
collectible to B if B ∼ B1, . . . , B ∼ Bs.

We say that G is collectible if it is collectible to
some B ∈ B. Note that if G has a single sink node
labeled by B, it is collectible to B.

Proposition 5.1. Define

W ′ =
∑

B∈B

1

PΩ(B)

∑

single-sink witness DAGs τ
with root node labelled B

w(τ)

The expected total number of collectible witness
DAGs compatible with R is at most W ′.

Proof. Suppose that G is a witness DAG collectible to
B. Then define G′ by adding to G a new sink node
labeled by B. As all the sink nodes in G are labeled by
B′ ∼ B, now G′ is a single-sink witness DAG containing
r + 1 nodes.

Now

P (G compatible with R) = w(G) =
w(G′)

PΩ(B)

The total probability that there is some G compati-
ble with R and collectible to B, is at most the sum over
all such G. When we sum over all such witness DAGs
G, then each witness DAG G′ with a single sink node
labeled by B appears at most once in the sum. Hence,

1181 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

we have

∑

G collectible

w(G) ≤
∑

B∈B
G collectible to B

w(G)

≤
∑

B∈B
G collectible to B

w(G′)

PΩ(B)

≤
∑

B∈B

∑

single-sink witness DAGs τ
rooted in B

w(τ)

PΩ(B)

= W ′

Corollary 5.1. We have W ′ ≤ ∑

B∈B
µ(B)

PΩ(B) .

Proof. This follows from Proposition 2.5.

The parameter W ′, which dictates the run-time
of our parallel algorithm, has a somewhat complicated
behavior. For most applications of the LLL where the
bad events are “balanced,” we have W ′ ≈ m. For
example, consider the symmetric LLL setting:

Proposition 5.2. If the symmetric LLL criterion
ep(d + 1) ≤ 1 is satisfied then W ′ ≤ me.

Proof. Observe that the asymmetric LLL criterion is

satisfied by setting x(B) = ePΩ(B)
1+ePΩ(B) for all B ∈ B.

Now by Theorem 1.4, we have µ(B) ≤ ePΩ(B) for all
B ∈ B. So W ′ ≤ me.

More generally, W ′ is small as long as none of the
bad events has a probability which is too small.

Proposition 5.3. Let p : B → [0, 1] be a vector
satisfying the two conditions:

1. PΩ(B) ≤ p(B) for all B ∈ B

2. p satisfies the Shearer criterion with ǫ-
multiplicative slack.

Then we have

W ′ ≤ (n/ǫ)

minB∈B p(B)

Proof. For any witness DAG G whose nodes are labeled
B1, . . . , Bs, define w′(G) to be p(B1) · · · p(Bs).

Now consider some single-sink witness DAG τ with
root node labeled by B and s additional nodes labeled
B1, . . . , Bs. We have that

w(G)

PΩ(B)
=

s
∏

i=1

PΩ(Bi) ≤
s

∏

i=1

p(Bi) ≤
w′(G)

p′(B)

Thus, we have that

W ′ ≤
∑

B∈B

1

p(B)

∑

τ rooted in B

w′(τ)

≤
∑

single-sink witness DAGs τ w(τ)

minB∈B p(B)

≤ (n/ǫ)

minB∈B p(B)
by Corollary 2.1

On the other hand, for instances in which there are some
bad events which have very low probability and very
high dependency, then W ′ can become exponentially
large.

5.2 Algorithmically enumerating witness

DAGs In the Moser-Tardos setting, the witness trees
were not actually part of the algorithm but were a
theoretical device for analyzing it. In our algorithm, we
will operate directly on witness DAGs. The following
algorithm draws a random resampling table and then
builds a list of witness DAGs compatible with it:

1. Randomly sample the resampling table R.

2. For each bad event B true in the initial configu-
ration R(·, 0), create a graph with a single vertex
labeled B. We denote this initial set by F1.

3. For k = 1, 2, . . . K:

4. For each consistent pair of witness DAGs
G1, G2 ∈ Fk, form G′ = G1 ∨ G2. If G′ is
collectible, then add it to Fk+1.

5. For each witness DAG G ∈ Fk which is
collectible to B, create a new witness DAG
G′ by adding to G a new sink node labeled by
B. If G′ is compatible with R then add it to
Fk+1.

6. Finally, add every G ∈ Fk to Fk+1. (So that
Fk ⊆ Fk+1).

We will show that for K = O(ǫ−1 log(ǫ−1n)), with
high probability this algorithm generates all the single-
sink witness DAGs compatible with R.

Proposition 5.4. Let G ∈ Fk for any integer k ≥ 1.
Then G is compatible with R.

Proof. We show this by induction on k. When k = 1,
then G ∈ F1 is a singleton node v labeled by B. Note
that Xv

G(i) = R(i, 0) for all i ∈ SB , and so B is true on
Xv

G. So G is compatible with R.
Now for the induction step. Suppose first G was

formed by G = G1 ∨ G2, for G1, G2 ∈ Fk−1. By

1182 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

induction hypothesis, G1, G2 are compatible with R. So
by Proposition 4.6, G is compatible with R. Second
suppose G was formed in step (5), so by definition it
must be compatible with R.

Proposition 5.5. Suppose that G is a collectible wit-
ness DAG with k nodes compatible with R. Then G ∈
Fk.

Proof. We show this by induction on k. When k = 1,
then G is a singleton node v labeled by B, and Xv

G(i) =
R(i, 0). So B is true on the configuration R(·, 0), and
so we put G into F1.

For the induction step, first suppose G has a single
sink node v labeled by B. If G has only one vertex, then
G ∈ F1 ⊆ Fk. So we may suppose G has multiple nodes.
Now consider the witness DAG G′ = G−v. This witness
DAG has at most r − 1 nodes. Also, all the sink nodes
in G′ must be labeled by some B′ ∼ B (as otherwise
they would remain sink nodes in G). So G′ is collectible
to B. So, by induction hypothesis, G′ ∈ Fk−1. Now
iteration k − 1 transforms the graph G′ ∈ Fk−1 into
G (by adding a new sink node labeled by B), and so
G′ ∈ Fk as desired.

Next, suppose that G is a witness DAG with
multiple sink nodes v1, . . . , vs labeled by B1, . . . , Bs,
with the property s ≥ 2 and that B ∼ B1, . . . , Bs

for some B ∈ B. Let G′ = G(v1) and let G′′ =
G(v2, . . . , vs). Note that G′ is missing the vertex vs

and similarly G′′ is missing the vertex v1. So G′, G′′

have strictly less than k nodes. Also, note that G′, G′′

are collectible to B.
Finally, observe that G = G′ ∨ G′′. Clearly

every vertex in G appears in G′ or G′′. Also, by
Proposition 4.1, G, G′ are both prefixes of G and hence
are compatible with R.

So by induction hypothesis, we have G′, G′′ ∈ Fk−1,
and thus G = G′ ∨ G′′ is added to Fk in step (4).

Proposition 5.6. Suppose that we can check whether
any given bad event is true in time O(log n) and poly(m)
processors. Then whp, this procedure enumerates all
single-sink witness DAGs compatible with R, with the
following complexity bounds:

Õ(ǫ−1(log ǫ−1n)(log(W ′ǫ−1n)) time

(W ′ǫ−1n)O(1) processors.

Proof. We have shown that Fk contains all the col-
lectible witness DAGs compatible with R using at most
k nodes. Furthermore, by Corollary 2.2, whp all the
single-sink witness DAGs compatible with R contain
at most O(ǫ−1 log(ǫ−1n)) nodes. Hence, for K =
O(ǫ−1 log(ǫ−1n)), we have that with high probability
FK contains all such single-sink witness DAGs.

Furthermore, the expected total number of such
DAGs is at most W ′. Hence, with high probability,
the total number of such DAGs is at most W ′nO(1).
Each DAG could involve up to nǫ−1 log n cells from the
resampling table. So we can store the entire collection
of such DAGs using (W ′ǫ−1n)O(1) processors.

We describe in Section 5.5 further details about how
these witness DAGs can be processed. Given that there
are M = (W ′n)O(1) total DAGs and that each bad event
can be checked in O(log n) time, we can implement
individual steps using (Mmǫ−1n)O(1) processors and
Õ(log(Mǫ−1mn)) time. Observe that W ′ ≥ m, so this
can be simplified to (W ′ǫ−1n)O(1) etc.

(We note that the condition that individual bad
event can be checked in time O(log n) and polynomial
processors is much weaker than the condition that there
is a Bad-Event Checker running in time O(log n) and
poly(n) processors. In the former case, the total number
of processors for checking bad events can become as
larger as poly(m).)

5.3 Producing the final configuration So far, our
parallel algorithm has generated the complete set of
single-sink witness DAGs compatible with R. We can
define a graph G, whose nodes correspond to such single-
sink witness DAGs, with an edge between DAGs if
they are pairwise inconsistent. Let I be a maximal
independent set of G, and let G =

∨ I. Now define
the configuration X∗, which we refer to as the final
configuration, by

X∗(i) = R(i, |G[i]| + 1)

for all i ∈ [n].
The final stage of our algorithm is to output X∗.

Proposition 5.7. With high probability, no bad event
B ∈ B is true on the configuration X∗.

Proof. Suppose that B is true on X∗. Now define the
witness DAG H by adding to G a new sink node v
labeled by B. Observe that G is a prefix of H. By
Proposition 4.1 H,G are consistent.

We claim that H is compatible with R. By Propo-
sition 2.4, G is compatible with R so this is clear for
all the vertices of H except for its sink node v. For
this vertex, observe that for each i ∈ SB we have
Xv

H(i) = R(i, |H[i]|) = R(i, |G[i]| + 1) = X∗(i). By
Proposition 2.4, this implies that H(v) is compatible
with R as well.

So H(v) is a single-sink witness DAG compatible
with R. By Proposition 5.6, with high probability
H(v) ∈ FK . So H(v) is a node of G. Observe that H(v)
and all the witness DAGs G′ ∈ I are prefixes of H. By

1183 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Proposition 4.7, H(v) is pairwise consistent with all of
them. As I was chosen to be a maximal independent
set, this implies that H(v) ∈ I.

By Proposition 4.4, this implies that H(v) is a prefix
of G. This implies that |G[i]| ≥ |H(v)[i]| for any variable
i. But for i ∈ SB we have |H(v)[i]| = |H[i]| = |G[i]|+1,
a contradiction.

Putting this all together gives a faster algorithm for
the LLL.

Theorem 5.1. Suppose we satisfy the Shearer criterion
with multiplicative ǫ-slack. Suppose we can check,
for any bad event B and any configuration, if B is
true in time O(log n). Then there is an algorithm
to find a configuration avoiding B, running in time
Õ(ǫ−1(log ǫ−1n) log(W ′ǫ−1n)) and using (W ′ǫ−1n)O(1)

processors.

Proof. By Proposition 5.6, enumerate all the single-
sink witness DAGs using Õ(ǫ−1(log ǫ−1n)(log(W ′ǫ−1n))
time and (W ′ǫ−1n)O(1) processors.

Whp, the total number of such single-sink witness
DAGs is WnO(1). Using Luby’s MIS algorithm, one
find a maximal independent set of such DAGs in time
O(log2(Wn)) and using (Wn)O(1) processors. Note that
W ≤ n/ǫ and so this running time is dominated by the
enumeration of the single-sink witness DAGs.

Finally, one can form the configuration X∗ as indi-
cated in Proposition 5.7 in time log(Wǫ−1n) and using
(Wǫ−1n)O(1) processors. This configuration avoids all
bad events, as desired.

Corollary 5.2. Suppose that the symmetric LLL cri-
terion is satisfied with ǫ-multiplicative slack, i.e., ep(1+
ǫ)(d + 1) ≤ 1, and we can determine if any bad event B
is true on a given configuration in time O(log n). Then
we can find a configuration avoiding B in expected time
Õ(ǫ−1 log(mn) log n) and using (mn)O(1) processors.

Proof. We have W =
∑

B∈B ep ≤ O(m/d). By
Proposition 5.2, we have W ′ ≤ me. Now note that
m ≤ nd, so W ≤ O(n).

Next, note that even if ep(d + 1) = 1, then we can
still satisfy the Shearer criterion with multiplicative ǫ-
slack, for ǫ = Ω(1/d). Hence, we can assume that
ǫ−1 ≥ Ω(1/m) and hence the terms log ǫ−1 can be
upper-bounded by log m.

Now apply Theorem 5.1.

5.4 A heuristic lower bound In this section, we
give some intuition as to why we believe that the
run-time of this algorithm, namely O(ǫ−1 log2 n), is
essentially optimal for LLL algorithms which are based
on the resampling paradigm. We are not able to give a

formal proof, because we do not have any fixed model
of computation in mind. Also it is not clear whether
our new algorithm is based on resampling.

Suppose we are given a problem instance on n
variables whose distributions are all Bernoulli-q, where
q ∈ [0, 1] is a parameter to be chosen. The space B
consists of

√
n bad events, each of which is a threshold

function on
√

n variables, and all these events are
completely disjoint from each other. By adjusting the
exact threshold used and the parameter q, we can
ensure that the probability p of each bad event event
is p = 1 − ǫ.

The number of resamplings of each event is a
geometric random variable, and it is not hard to see
that with high probability there will be some bad event
B which requires Ω(ǫ−1 log n) resamplings in order to
cause B to become false.

Also, note that whenever we perform a resampling
of B, we must compute whether B is currently true.
This requires computing a sum of

√
n binary variables,

which itself requires time Ω(log n).
Thus, the overall running time of this algorithm

must be Ω(ǫ−1 log2 n).
The reason we consider this a heuristic lower bound

is that, technically, the parallel algorithm we have given
is not based on resampling. That is, there is no current
“state” of the variables which is updated as bad events
are discovered. Rather, all possible resamplings are
precomputed in advance from the table R.

5.5 Processing the witness DAGs In our algo-
rithm, we have assumed that if we have M total witness
DAGs under consideration, that we can perform the ba-
sic operations of the parallel algorithm in Õ(log(Mmn))
time using (Mmn)O(1) processors on a PRAM.

The main task we must perform is, given two
witness DAGs G1, G2, we must first determine if G1, G2

are consistent and if so form G = G1 ∨ G2. Next, we
must check if G is collectible to some B. A related task
is: given a graph G collectible to some B, create a new
graph G′ which has an added sink node labeled B.

If we worked with the full graph structure of the
witness DAGs then these steps might appear to require
a traversal of the graphs. However, we only need to store
a limited amount of information about these DAGs.
Namely, we must store the list of all sink nodes, and
we must store the association between entries of R and
the corresponding bad events. That is, for each variable
i ∈ [n] and each t ≤ O(ǫ−1 log n), we must determine
a list of all the nodes v ∈ G and their labels (B, k)
such that G(v)[i] = t. Using this information, we may
easily determine if G1, G2 are consistent. It is also
straightforward to compute this association table for

1184 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

G1 ∨ G2, given the association tables for the individual
graphs. (We simply merge the lists; this can be done
using standard parallel sorting algorithms).

We can likewise determine the sink nodes of G1∨G2.
Using our association table, we can determine if any sink
node of G1 appears in G2; if so, this node is a sink node
of G1 ∨G2 if is also a sink node of G2. If the sink node
of G1 does not appear in G2, then it becomes a sink
node in G1 ∨ G2, and so forth.

Next, we enumerate in parallel over all B ∈ B.
Suppose we are given a fixed B and a fixed G; we
want to determine if G is collectible to B. We can
check, in parallel, whether the sink nodes of G overlap
the variables in B; this takes time O(log n) and nO(1)

processors. We then check if every sink node of G
overlapped in some variable; this takes another O(log n)
time and nO(1) processors.

Finally, we need to determine if we can form a new
graph G′ by adding a new sink node v labeled B to G.
In addition to the graph-theoretic structure needed for
this, we need to check if B is true on the configuration
Xv. This will be possible under our assumption that we
can check if a bad event is true in time T .

Other operations used in our algorithm can be
handled in similar ways.

6 A deterministic variant

In [3], a deterministic parallel (NC) algorithm is given
for the LLL. This algorithm requires an additional
slack compared to the Parallel Resampling Algorithm
(which in turn requires additional slack compared to
the sequential algorithm). Although [3] gives a general
asymmetric criterion, it is quite technical and has many
parameters. We will discuss the simpler symmetric
setting. In that case, the algorithm of [3] requires that

epd1+ǫ < 1

There are additional constraints on how the bad
events are represented. Again, these can be fairly
technical, so we will focus on the simplest scenario:
the set B contains m bad events, which are each
explicitly represented as atomic events (that is, they
are a conjunction of terms of the form Xi = j).
The paradigmatic example of this setting is the k-SAT
problem. We will also suppose that m ≫ n (in fact,
typically m is exponentially larger than n), to simplify
the notation. In this simplified setting, their algorithm
requires O(ǫ−1 log3 m) time and mO(1/ǫ) processors.

In the parallel algorithm as given, we assume that
R is drawn from a completely independent probability
distribution. Such probability distributions have expo-
nentially large support. A key result from [3] is that
substantially less independence is required.

Definition 6.1. We say a probability space Ω′ is k-
wise, ǫ-approximately independent, if for all subsets
of variables Xi1 , . . . , Xik

, and all possible valuations
j1, . . . , jk, we have

∣

∣

∣
PΩ′(Xi1 = j1 ∧ · · · ∧ Xik

= jk)

− PΩ(Xi1 = j1 ∧ · · · ∧ Xik
= jk)

∣

∣

∣
≤ ǫ

Theorem 6.1. ([6]) There are k-wise, ǫ-approximately
independent probability spaces which have a support of
size poly(log n, 2k, ǫ−1).

Proposition 6.1. ([3]) Suppose that B consists of
atomic events.

There are sufficiently large constants c, c′ such that
the following holds: Suppose that R is drawn from a
probability distribution which is m−c/ǫ-approximately,
log m-wise independent. Then, with probability > 1/2,
there are no single-sink witness DAGs compatible with
R containing at least c′ log m

ǫ log d nodes.
Note that this event only depends on the entries

R(i, x) for x ≤ log m/ log d. Hence, this event only
depends on polynomially many entries in R. By Theo-
rem 6.1, probability spaces with the required level of in-
dependence on this number of elements exist which are
supported on only mO(1/ǫ) events

There is one major difference between the RNC
algorithm of Section 5 and the NC algorithm in this
section. In Section 5, we only enumerated witness DAGs
compatible with R. Potentially, there could be many
collectible witness DAGs not compatible with R, but we
never need to deal with them. For our NC algorithm, we
will enumerate all single-sink witness DAGs, and then
we later check whether they are compatible with R. The
stronger slack condition epd1+ǫ < 1 is needed to ensure
that this process remains bounded.

We give a deterministic algorithm to enumerate
single-sink DAGs, with no restriction on their compati-
bility with any resampling table R:

1. Initialize F1 by creating, for each B ∈ B, a single-
node DAG with a vertex labeled by B.

2. For k = 1, . . . ,K = c log m
ǫ log d :

3. Suppose that G, G′ are witness DAGs in Fk

with sink nodes v, v′ labeled B, B′ where B ∼
B′. Create a new witness DAG G′′ as follows.
The nodes of G′′ are the union of the nodes in
G, G′. We add an edge from v′ to v. Also, for
any pair of nodes w ∈ G, w′ ∈ G′ (other than
w = v, w′ = v′), if w and w′ are labeled by
dependent bad events, we add an edge from w
to w′. If G′′ has ≤ k + 1 nodes, add it Fk+1

1185 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Proposition 6.2. Suppose that G is a single-sink wit-
ness DAG containing k nodes. Then G ∈ Fk.

Proof. For k = 1 this is clear.
Suppose G is a single-sink witness DAG containing

k > 1 nodes. Let v be the sink nodes of G and let v′ be
the sink node of G − v. Let X be the subset of nodes
of G − v which are disconnected from v in the graph
G − v′.

Now let G1 be the subgraph of G induced on the
vertices {v′}∪X, and let G2 the subgraph of G induced
on the remaining vertices of G. Note that G1 is a single-
sink witness DAG, with sink node v′; the reason is that
since every node in G has a path to v, it follows that
every node in X has a path to v through v′ and hence
every node in G′ has a path to v′. Also, G2 is a single-
sink witness DAG. For, every node outside X has a path
in G to v avoiding v′, and this path remains in G2. Also,
the vertices of G1, G2 clearly partition the vertices of G.

Both G1, G2 are missing at least one vertex from
G: G1 is missing v and G2 is missing v′. Hence, by
inductive hypothesis, we have G1, G2 ∈ Fk−1.

Now let G′′ be the result of applying step (3) of the
above parallel algorithm with the graphs G1, G2. We
claim that G = G′′. The labeled nodes of G′′ are clearly
as in G. Also, G′′ contains an edge from v′ to v and so
does G. Now, consider any pair of vertices w, w′ ∈ G,
other than v, v′.

If w, w′ have no edge in G, then they also have no
edge in G′′.

If w, w′ both lie in X, or both lie outside X,
then they have edges in the induced subgraphs G1, G2

respectively; hence they have edges in G′′.
So suppose w ∈ X,w′ /∈ X and there is an edge

connecting w to w′. Then w ∈ G1, w
′ ∈ G2. We claim

that the edge must go from w′ to w. For, there is a
v′-avoiding path from w′ to v; if there was an edge
connecting w to w′, then this could be extended to a
v′-avoiding path from w to v, which would imply that
w /∈ X. But, by definition of G′′, there is an edge from
w′ to w in G′′, as desired.

The number of processors requires is poly(FK , n);
we will show that this is polynomial in m, n. Also,
critically, we show this enumerates every single-sink
witness DAG.

Proposition 6.3. The total number of single-sink wit-
ness DAGs containing k vertices is at most m(ed)k. In
particular, for k ≤ K = c log m

ǫ log d this is mO(1/ǫ).

Proof. Taking advantage of the correspondence between
single-sink witness DAGs and witness trees, it suffices to
bound the number of witness trees. There are m choices

for the label and there are at most (ed)k choices for
the tree structure (using the standard formula counting
labeled d-ary tree structures with k nodes).

Thus, we can enumerate all sufficiently large single-
sink witness DAGs. Given a fixed witness DAG G and
a fixed resampling table R, we can easily check if G is
compatible with R. Thus, after enumerating FK , we
can filter it down to obtain F ′

K , which is considerably
smaller.

Proposition 6.4. Suppose R is drawn from a proba-
bility distribution which is m−c/ǫ-approximately, log m-
wise independent. Then, for c sufficiently large, the ex-
pected total number of single-sink witness DAGs com-
patible with R is mO(1).

Proof. The event that a k-node witness DAG is compat-
ible with R is a conjunction of events corresponding to
the vertices in G. Each such event depends on at most
d variables, so in total this is an atomic event depends
on at most kd ≤ log m terms. So, by Definition 6.1,
this event also has probability ≤ w(G) + m−c/ǫ. Now
sum over all single-sink witness DAGs. The term w(G)
sums to O(m) and the term m−c/ǫ sums to O(1) for c
sufficiently large.

Theorem 6.2. There is a deterministic algorithm run-
ning in time Õ(ǫ−1 log2 m) and using mO(1/ǫ) processors
to find a configuration avoiding B.

Proof. We can enumerate FK in time O(log2 m) and
using mO(1/ǫ) processors. Next, we form a probability
space for drawing R which is m−c/ǫ-approximately,
log m-wise independent, and is supported on mO(1/ǫ)

elements. Each processor explores a single event in this
space.

For each R, we filter down the set Fk to the smaller
set F ′

k consisting of witness DAGs compatible with R.
We proceed as for the randomized algorithm: we define
a graph G, whose nodes correspond to such single-
sink witness DAGs compatible with R, with an edge
between DAGs if they are pairwise inconsistent. By
Propositions 6.1, 6.4, there is a positive probability that
the two events jointly occur:

1. F ′
K contains mO(1) nodes

2. There are no witness DAGs outside F ′
K that are

compatible with R.

For a fixed resampling table R, we can find a max-
imal independent subset I ⊆ G, using time O(log2 m)
and using mO(1) processors. Let G =

∨ I. As in Propo-
sition 5.7, defining X∗(i) = R(i, |G[i]| + 1) gives a con-
figuration avoiding all bad events.

1186 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

It requires O(ǫ−1 log2 m
log d) time to enumerate F ′

K and

it require O(log2 m) to generate an MIS of it. Thus
the total time is O(ǫ−1 log2 m) and the total processor
count is mO(1/ǫ).

7 Acknowledgments

Thanks to Aravind Srinivasan and Navin Goyal, for
helpful discussions and comments. Thanks to the
anonymous reviewers, for many helpful comments and
corrections.

References

[1] Achlioptas, D., Iliopoulos, F.: Random walks that
find perfect objects and the Lovász Local Lemma.
Foundations of Computer Science (2014).

[2] Bissacot, R., Fernandez, R., Procacci, A., Scoppola,
B.: An improvement of the Lovász Local Lemma
via cluster expansion. Combinatorics, Probability and
Computing 20-5, pp. 709-719 (2011).

[3] Chandrasekaran, K., Goyal, N., Haeupler, B.: Deter-
ministic algorithms for the Lovász local lemma. SIAM
Journal on Computing 42-6 , pp. 2132-2155 (2013)

[4] Chung, K., Pettie, S., Hsin-Hao, S.: Distributed
algorithms for the Lovász local lemma and graph
coloring. PODC 2014, pp. 134-143 (2014)

[5] Erdős, P., Lovász, L.: Problems and results on 3-
chromatic hypergraphs and some related questions. In
A. Hajnal, R. Rado, and V. T. Sos, eds. Infinite and
Finite Sets II, pp. 607-726 (1975).

[6] Even, G., Goldreich, O., Luby, M., Nisan, N., Velick-
ovic, B.: Efficient approximation of product distribu-
tions. Random Structures and Algorithms, 13(1), pp.
1-16 (1998)

[7] Ghaffari, M.: Towards an optimal distributed algo-
rithm for maximal independent set. arxiv:1506.05093.
(2015)

[8] Haeupler, B., Saha, B., Srinivasan, A.: New construc-
tive aspects of the Lovász Local Lemma. Journal of the
ACM, 58-6, 2011.

[9] Harris, D.: Lopsidependency in the Moser-Tardos
framework: beyond the Lopsided Lovász Local Lemma.
SODA 2015.

[10] Harvey, N., Vondrak, J.: An algorithmic proof of
the Lopsided Lovász Local Lemma. Arxiv 1504.02044
(2015). To appear, Proc. IEEE Symposium on Foun-
dations of Computer Science, 2015.

[11] Kolipaka, K., Szegedy, M.: Moser and Tardos meet
Lovász. Symposium on Theory of Computing, pp. 235-
244 (2011).

[12] Luby, M.: A simple parallel algorithm for the maximal
independent set problem. SIAM Journal on Computing
15-4, pp. 1036-1053 (1996).

[13] Moser, R. : Derandomizing the Lovász Local Lemma
more effectively. ArXiv abs/0807.2120, pp. 1-8 (2008).

[14] Moser, R., Tardos, G.: A constructive proof of the
general Lovász Local Lemma. Journal of the ACM 57-
2, pp. 11:1-11:15 (2010).

[15] Shearer, J. B.: On a problem of Spencer. Combinator-
ica 5, pp. 241-245 (1985).

1187 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

